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A report of experimental results on dynamo action is presented, obtained at the
Karlsruhe dynamo test facility. Former observations concerning the properties of
the dynamo magnetic field are corroborated and complemented. The feedback
of the dynamo magnetic field on the sodium velocity in the test module is
analysed based on measurements employing permanent magnet potential sensors. The
evaluation of time signals recorded by these probes shows that a growing dynamo
magnetic field transforms hydrodynamic turbulent velocity profiles in channels into
magnetohydrodynamic slug flow profiles, indicating a balance between pressure and
Lorentz forces. Cross-correlations between time signals of the magnetic induction
and the local velocity reveal a significant coherency between apparently random
fluctuations of these relevant dynamo quantities.

1. Introduction
It is generally accepted today that planetary and stellar magnetic fields originate

from dynamo action in homogeneous, electrically conducting and circulating fluids in
the interior of celestial bodies. This idea was first conjectured by Larmor (1919) and
has been corroborated repeatedly by several geo- and astrophysicists who developed
analytical and numerical models for this magnetohydrodynamic (MHD) process.
Spectacular numerical calculations simulate even sophisticated geo- and astrophysical
phenomena such as reversals of the geomagnetic field and the magnetodynamics of
solar flairs. The progress in the development of dynamo modelling has been repeatedly
summarized in survey articles, e.g. by Rädler (1999), Busse (2000), Glatzmaier &
Roberts (2002) and in a textbook by Rüdiger & Hollerbach (2004). There has
always been the desire to confirm the models for homogeneous dynamo action in
laboratory experiment, but such experiments require equipment of dimensions that
commonly exceed the capability of University Laboratories and may even challenge
the technologies of major research establishments. Stieglitz & Müller (1996) and
Cardin et al. (2002) have outlined this in some detail.

Lowes & Wilkinson (1968) first demonstrated experimentally the feasibility of
homogeneous dynamos in electrically conducting continua. They avoided the problem
of large devices by using ferromagnetic material and employing rigid-body rotation
of solid steel cylinders in steel blocks (lubricated by liquid mercury at contacting
boundaries). They followed a model conception of Herzenberg (1958) to achieve
self-excitation of dynamo action. The design of an experimental hydromagnetic
screw dynamo was pursued by Gailitis et al. (1989) in Riga, taking up an idea
of Ponomarenko (1973). They showed successfully (Gailitis et al. 2000, 2001) that
dynamo magnetic fields could be generated by helical sodium flow in coaxial pipes.
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A next step towards more generic flow topologies regarding geophysical application
was made in the Karlsruhe dynamo experiment (Müller & Stieglitz 2000; Stieglitz &
Müller 2001; Müller, Stieglitz & Horanyi 2004). Here, according to a proposal by
Busse (1992), an arrangement of counter-rotating columnar vortices was realized by
forced flow in a system of helical guide tubes placed in a container filled with sodium.
In several test campaigns, a permanent dynamo magnetic field of dipole character was
observed at this test facility and was analysed in some detail (Müller et al. 2004). The
successful dynamo experiments in Riga and Karlsruhe have stimulated the efforts
of other groups to plan and design magnetohydrodynamic dynamo experiments
simulating the fluid flow topologies in planetary cores and stellar interiors more
realistically. In particular, the large-scale feedback of the dynamo magnetic field on a
free bulk flow pattern in planetary cores is the focus of such experiments. A survey of
the respective experimental activities is given in Chossat, Armbruster & Oprea (2001),
Gailitis et al. (2002) and Rädler & Cebers (2002). This target is beyond the capability
of channelled sodium flows, as realized in the Riga and Karlsruhe test facilities.

Nevertheless, even if of limited use for geo- and astrophysical application, we
considered an experimental investigation of the back-reaction of a growing dynamo
magnetic field on the velocity distribution to be of fundamental interest and worth
performing in the Karlsruhe test facility, since it may further elucidate the saturation
mechanism in the transcritical range. In another series of dynamo experiments, we
have addressed the problem that will be outlined in this article. The key experimental
issue in this context is the simultaneous measurement of the local sodium velocity in
the channels of the test facility and the intensity of the local magnetic field in the
vicinity of the velocity probes. This paper is organized as follows. Section 2 recalls
briefly the principal design of the Karlsruhe test facility and outlines the specific
instrumentation. The measured results for the magnetic field, and the local velocity
in the axial flow channels are presented and discussed in § 3. In the Appendix the
evaluation formulae for the permanent magnet potential probe used are derived and
discussed in some detail.

2. The test facility and its instrumentation
Stieglitz & Müller (1996) and Müller et al. (2004) described the Karlsruhe test

facility in some detail. The test rig consists essentially of a cylindrical module which
contains 52 channel-type vortex generators connected to three independent sodium
loops, each of which is equipped with an MHD feed pump and a heat exchanger to
ensure constant operational temperature during the experimental runs. The helical and
axial channel flow in the vortex generators in terms of volumetric flow rates V̇Hand
V̇c can be independently controlled by forced flow in the different sodium loops. The
structure and the principal arrangement of the vortex generators is sketched in figure 1,
together with essentials of the instrumentation and a coordinate system.

The sodium volumetric flow rate in each sodium loop was measured by electro-
magnetic flow meters outside the test module. The pressure drop across the module
channel systems was determined by capacitance pressure gauges. The dynamo
magnetic field was identified by two independent sensor systems. Three Hall sensors
attached to a traversable prong (two at position H3, one at position H4, see figure 1)
could be moved in a borehole along the centre axis of the module, and were used to
measure locally three components of the magnetic field. Two more Hall sensors were
fixed at positions H5 and H6 on the module’s mantle. Each Hall sensor measured
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Figure 1. Technical sketch of the dynamo module and its instrumentation with Hall sensors
and flux sensors embedded in a coordinate system. H3, two Hall sensors to measure three field
components Bx , By , Bz; H4, one Hall sensor to measure By; H5, one Hall sensor to measure
two components Bz and the radial component Br ; H6, one Hall sensor to measure the radial
component Br ; Cax , sensor coil to measure the time rate of change of the axial magnetic flux
component Φ̇z; Cu1, Cu2, Cu3, sensor coils to measure the time rate of change of the azimuthal
magnetic flux componentΦ̇ϕ .

one directional component of the magnetic field, except for two sensors at positions
H3 and H5 which could record two components. Thus, at position H3, all three field
components were recorded. The transient phase of onset of dynamo action as well as
the dynamic behaviour of the magnetic field at constant supercritical operation could
be measured through a set of sensor wire coils that are either threaded through the
borehole in the module centre, or are twined around the module equator, as indicated
schematically in figure 1. These sensor coils detected time variations of the overall
magnetic fluxes through planes of different orientation in terms of induced voltage
time series depending on the spatial arrangement of the respective coils.

The measurement of the local velocity in the channels of the dynamo module is
crucial for studying the feedback of the dynamo magnetic field on the velocity. For
that purpose we used a so-called compensated permanent magnet probe (CPMP).
A straight compensated probe was placed in the centre of an axial channel of the
module next to the axis of the cylinder, as sketched in figure 2. The specific measures
for the location of the probe are given in figure 2.

The measuring principle of the miniature permanent magnet potential probe
is based on Ohm’s law in moving electrically conducting media. Employing this
measuring principle in the environment of the dynamo magnetic field requires an
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Figure 3. Sketch of the compensated permanent magnet probe (CPMP);
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evaluation procedure that eliminates the influence of the dynamo field from a
measured voltage between electrical poles in the fluid. The principle of the probe
and the evaluation procedure is described in the Appendix.

A sketch of the compensated permanent magnet probe (CPMP) is shown in figure 3.
A miniature permanent dipole magnet of 2 mm in diameter is placed near the tip of
a small stainless steel tube of 2 mm inner and 2.5 mm outer diameter. Two pairs of
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thermocouple wires (1, 2) and (3, 4) are welded to the wall inside the tube, one pair
in a plane (1, 2) (dotted line 1, 2 in figure 3a) cutting the small dipole magnet, the
other pair in another plane (3, 4) (dashed-dotted line 3, 4 in figure 3a) at a distance
of 3 mm downstream of the first one. The attachment of the thermocouple tips at
the tube walls with regard to the orientation of the magnetic dipole (indicated by
‘N–S’ in figure 3b) is such that a maximum induced voltage is recorded when liquid
sodium bypasses the tip of the probe. The relationship between the velocity u parallel
to the probe shaft, the induced voltage E between two thermocouple electrodes and
the local intensity of the magnetic induction is given as E ∼ uB⊥ where B⊥ is the
component of the magnetic induction perpendicular to the two electrodes formed by
a pair of thermocouples (for more details see the Appendix). We may decompose the
induced voltage E, the velocity u and the dynamo magnetic induction BD into a mean
and fluctuating component that reads as E = Ē + E′, u = ū+u′, B⊥ = BPM + B̄D +B ′

D

where BPM is the contribution of the permanent magnet to the overall magnetic
induction at the probe tip.

Inserting these relationships into the relation for the induction and using simple
averaging rules gives finally the evaluation equations for the temporal mean of the
velocity and its fluctuation values in the form

ū = γ
Ē(12) − Ē(34)

1 − α
, (1a)

u′ = γ
E′

(12) − E′
(34)

1 − α
. (1b)

The values of the factor γ and the ratio α were determined from calibration
measurements under subcritical, i.e. non-dynamo active flow conditions in the same
test module. Details of the derivation of (1a) and (1b) and limits of their validity are
outlined in the Appendix together with the calibration procedure.

3. Results
3.1. The magnetic field

The components of the mean dynamo magnetic induction were recorded along
the positive z-axis of the test module, employing the traversable Hall probes. For
technical reasons requiring the coolability of the Hall sensors, the probe could not
be traversed beyond the centre of the axis to positions z < 0. A typical measured
distribution of the field intensity is shown in figure 4 for equal volumetric flow rates
V̇c = V̇H = 111 (m3 h−1) in the axial and helical channels of the vortex generators. The
data represent mean values averaged over time intervals in the range 1 <�t < 3 min
at a data recording frequency of 512 Hz.

Compared to previous measurements (see Müller et al. 2004) the range of the
recorded data has been doubled to the axial position z = 0.60 m which even covers a
distance of 0.1 m outside the module. The more detailed measurements of the magnetic
induction on the module axis can now be compared with the shape functions for
the whole axial range calculated by Tilgner (2002 and personal communication) and
Rädler et al. (2002a, b) within the scope of a kinematic dynamo model. These authors
assume in their calculations a perfect cylindrical symmetry of the test module. Here
we show, for simplicity, only the results of Tilgner. (For a comparison between the
theoretical results of Rädler et al. (2002a, b) and our earlier measurements see Müller
et al. (2004).) The graph in figure 4 confirms our conjecture from previous experiments
that regarding the connecting feed-piping, (see figure 3 in Müller et al. 2004), the
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Figure 4. Measured components of the magnetic induction Bx (�), By (�), Bz (�) along the

module axis in the range 0 � z � 0.60 m for the volumetric flow rates V̇ c = V̇ H = 111 (m3 h−1).
Calculated values Bx (—) and By (- - -) from Tilgner (2002).

technical performance of the test module gives rise to an intrinsic non-symmetry of
the magnetic field inside the module compared to the calculated ‘symmetric’ shape
functions. This is best evidenced by the shift between the locations of the measured and
calculated maximum |B|-field intensities, which for figure 4 are situated at z = 0.14m
and z ≈ 0.25 m, respectively, and, moreover, by the measured finite value of Bx at
z = 0. There is a fairly good agreement between the measured and calculated field
intensity in the vicinity of the module’s flat wall and further outside.

Previous measurements have shown that the dynamo magnetic field is not
stationary, but rather fluctuates about its mean value with significant amplitude
at all recordable time scales. Figure 5 displays typical time series for the Byand Bz

components recorded in the centre of the module (figure 5a, b) by Hall sensors, and
for the time rates of change of the azimuthal and axial magnetic flux components
Φ̇ϕ and Φ̇z (figure 5c, d) which were recorded by a sensor coil threaded through the
borehole along the z-axis and inclined by an angle ϕ = 30◦, and another one twined
around the test module at the equator.

The presented records were made under strong dynamo action at equal volumetric
flow rates V̇ c = V̇ H = 115 (m3 h−1) in the supply loops. At first glance, all the time series
in figure 5 show similar stochastic characteristics when comparing the corresponding
poloidal and torroidal components. More specific features of the field fluctuation may
be identified, however, from power spectral densities (PSD) associated with the time
signals in figure 5. These are shown in figure 6. All displayed spectra have in common
the strong power reduction in the frequency range 3 <f (Hz) < 20 and, generally, an
even steeper decrease of power for frequencies f > 20 Hz. The power spectral density
of By recorded by the Hall probe shows the characteristic broadband peak centred
on the frequency f ≈ 2.8Hz that has already been observed in previous experiments
(Müller et al. 2004) under the same operational conditions. The power spectra in
figures 6(c) and 6(d) for the magnetic flux components Φϕ and Φz were obtained
by time integrating the signals in figures 5(c) and 5(d) and a following projection
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Figure 5. Typical time series recordings of the magnetic induction (a) By and (b) Bz measured
with the Hall probe H3 at position z =0.075m (displayed in units (Gauss)) and time series of
the time rate of change of the magnetic fluxes (c) Φ̇ϕ and (d) Φ̇z measured at the sensor coil
Cu1 (see figure 1) for the azimuthal magnetic flux and the sensor coil Cax for the axial flux. (in
units (µV)). Operational conditions: V̇ c = V̇ H = 115 (m3 h−1).
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Figure 6. (a) and (b) power spectral densities (PSD) of time series recordings of the magnetic
induction By and Bz measured with the Hall probes H3 at position z = 0.075 as shown in
figures 5(a) and 5(b); (c) and (d) PSDs of the magnetic fluxes (c) Φϕ and (d) Φz obtained by
a time-integration of the signals in figures 5(c) and 5(d).

into the power spectral domain. They show a significantly stronger decrease in their
intensity within the displayed frequency range compared to the power distribution in
the spectra of the magnetic induction shown in figures 6(a) and 6(b). This indicates
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Figure 7. (a) and (b) power spectral densities (PSD) of the time derivatives of the
magnetic fluxes Φ̇ϕ in figure 5(c) and Φ̇z in figure 5(d) for the operational conditions

Vc =VH = 115 (m3 h−1), (c) and (d) PSDs of the time rate of change of the magnetic flux
Φ̇ϕ and Φ̇z recorded by the poloidal and equatorial sensor coil for the operational condition

Vc = VH = 105 (m3 h−1).

that the spectral power density of the magnetic induction decreases strongly from the
centre to the periphery of the test module, particularly in the higher-frequency range.

The PSD-functions in figure 7 were obtained from the recorded time-signals of
the sensor coils. They show two more characteristic features in the flow frequency
range. (i) Another broadband peak centred around a frequency of f ∼ 4–5 Hz can
be observed for the Φ̇z-signal, as seen in figure 7(b, d). (ii) The PSD-functions of
Φ̇ϕ obtained from an azimuthal coil, which is sensitive to temporal changes of the
toroidal magnetic flux, exhibit a typical power plateau in an intermediate frequency
range 0.1 <f (Hz) < 3 and decrease moderately towards the lower frequency range
f < 0.1 Hz and strongly in the higher range f > 3 Hz.

The specific features of the power spectral densities obtained from records of the
Hall sensors near the centre of the module (figure 6a, b) match well with evaluations
of previous measurements (figure 21 in Müller et al. 2004) and were discussed at
length. Nevertheless, we would like to point out again that the broadband peak
centred around the frequency f ≈ 2.8Hz in the PSD-function of the By-component
in figure 6(a) shifts to lower frequencies for decreasing intensities of the measured
magnetic field, i.e. for lower volumetric flow rates. We found this power peak at
f ≈ 1 Hz for volumetric flow rates V̇ c = V̇ H = 105 (m3 h−1) in agreement with our
earlier measurements. We conjectured previously, and still do, that this effect reflects
a resonant interaction of Alfvénic fluctuations at the smallest length scale of the test
module, i.e. at twice the diameter of a vortex generator. A corresponding power peak
is not visible in the power spectra of the magnetic flux components Φϕ and Φz in
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figures 6(c) and 6(d). This seems reasonable in the light of the effective short range
of Alfvénic fluctuations.

As mentioned above, another distinct broadband power peak is observed in the
spectra of the signals from the equatorial coil in figures 7(b) and 7(d). The equatorial
coil senses the time derivative of the magnetic flux component along the module
axis. The peak is centred around a frequency of f ≈ 4–5 Hz. However, contrary to the
spectral behaviour of the local signals by Hall sensors, the location of this power peak
in the frequency domain does not change noticeably when we reduced the operational
volumetric flow rates, e.g. to V̇ c = V̇ H = 105 (m3 h−1). This is demonstrated by figure
7(d). We suggest that in this case the location of the power peak originates from
hydrodynamic fluctuations of the swirling flow in the vortex generators that stretches
and transports the mean magnetic field lines. A time scale in accord with this idea
is given by the injection frequency of hydrodynamic helicity into the system. This
may be defined, for example, as fin = ūH /aπ where ūH is the mean velocity in
the helical channels and a the diameter of the vortex generator (see the table in the
Appendix of Müller et al. 2004). For our specific cases, this results in values fi ≈ 4.7 Hz
for volumetric flow rates V̇ c = V̇ H = 115 (m3 h−1), and in fi ≈ 4.2Hz for the flow
ratesV̇ c = V̇ H = 105 (m3 h−1). We consider this as a reasonable estimate with regard to
the rough assumptions for the velocity distribution in the helical channel. Using the
mean velocities in the channels instead, which are of the order of 3–4 (m s−1) would
have resulted in a one-order-higher estimated frequency (compare table 1 in Müller
et al. 2004). As mentioned before, the power spectra evaluated from signals recorded
by the poloidal sensor coils, as depicted in figures 7(a) and 7(c), show a characteristic
accumulation of power in the range of frequencies 0.1 <f (Hz) < 1.2 with a strong
power decay to higher and a moderate power reduction to lower frequencies. We
may translate this observation also into the wavenumber space by using Taylor’s
hypothesis and the smallest typical velocity of the system, the axial component of
the mean velocity in the helical channels which is typically ūH (ax) ≈ 1 (m s−1). The
power-containing range of wavenumbers k would than be 0.6 < k (m−1) < 7.5 and
the associated range of wavelengths λ would be 0.8 < λ(m) < 10. This suggests that
the most energetic fluctuations of the dynamo magnetic field are accumulated in the
large-scale field components.

All of the displayed spectra in figures 6 and 7 have in common the strong decay
in the dissipative range of frequencies beyond the Kolmogorov frequency fKλ based
on the magnetic diffusivity which we evaluated previously (see table 1 in Müller et al.
2004) and which varies for the cases considered between 9 <fKλ (Hz) < 15 .

Furthermore, there is a significant cross-correlation between the different
components of the magnetic field measured by Hall sensors at different positions,
but at a moderate distance from each other. A typical cross-correlation function
(CCF) is shown in figure 8 for the supercritical conditions V̇ c = V̇ H =112 (m3 h−1).
There is a relatively strong correlation of about 30 % between the fluctuations of the
By-components measured at the locations z = −0.06 m and z = 0.075 m on the module
axis.

The time signals of these By-components are correlated through a quasi-periodic
fluctuation with a period of about τ ≈ 0.4 s. This period is compatible with the
observed frequency peak in the PSD-function of the By component in figure 6(a).
Moreover, a delay time τ ≈ 0.1 s may be identified from the graph by estimating the
position of the maximum of an envelope to the oscillatory CCF as �t ≈ − 0.1 s (see
Bendat & Piersol 1986). These two effects may be interpreted by a perturbation wave
package travelling at a group velocity of about 1(m s−1). There are at least two possible
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Figure 9. The measured compensated mean induced voltage from the permanent magnetic
probe (CPMP) in the centre of an axial channel of a vortex generator next to the axis
of the module (a) as a function of the helical flow rates at a fixed axial flow rate of
Vc = 105 (m3 h−1), (b) as a function of the local induction B measured by hall probes at
the location x =0.1 m, y = 0.1 m, z = 0.077m. According to calibration measurements the
following relation holds: 1 µV measured by the CPM-probe corresponds to an axial local
velocity variation �u= 4.67 × 10−2 (m s−1) (see Appendix). �, �, measurements on different
days.

mechanisms for spatial correlations: (i) the radiative energy transport by Alfvén waves
and (ii) the convective energy transport by the fluid flow in the channels. The first one
is certainly limited to short distances because of the strong Joule damping of these
waves in liquid sodium. The rate of correlation must be expected to be weak even for
short distances. We thus conjecture, that the delay time of τ ≈ 0.1 (s) originates from
a field disturbance that is transported between the two Hall-sensors in the helical
flow domain by the axial component of the helical velocity. The transport velocity is
associated with the volumetric helical flow rate V̇ H = 112 (m3 h−1) and is calculated
roughly as ūH (ax) ≈ 1.21 m s−1. The distance between the two relevant Hall-sensors
was d =0.135 m.

3.2. Velocity characteristics due to the feedback of the dynamo magnetic field

Figure 9 presents the measured compensated mean induced voltage E = Ē(12) − Ē(34)

recorded by the CPM-probe as a function of the helical flow rate V̇ H . Figure 9(a)
shows the influence of the dynamo magnetic field on the local mean velocity in
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the centre of an axial channel at a position (x, y, z) = (0.1 m, 0.1 m, 0.075 m). The
experiments were conducted at a fixed axial flow rate of V̇ c = 105 (m3 h−1) and
for varying helical flow rates in the range 93 < V̇H � 118 (m3 h−1). For subcritical
conditions, i.e. V̇ H < 105 (m3 h−1), the local velocity, represented by the measured
induced voltage, is constant. Once dynamo action sets in at higher helical flow rates,
the velocity, i.e. the measured voltage, decreases first, but finally approaches saturation
at a lower level for even higher helical flow rates. The maximum velocity in the channel
centre at subcritical conditions is reduced by about 13 % and tends towards a plateau
value at even higher supercritical states. Figure 9(b) demonstrates the dependency of
the same effect on the intensity of the local induction of the dynamo measured by the
Hall probes at position H3 (see figure 1). In this figure, the measured data were fitted
by an ansatz-function in the form: E = 78 + 16.5 (1 + 1.25 × 10−5B2)−1. This function
corresponds in its form and in the order of magnitude of its coefficients with the
‘quenching-function’ that Rädler et al. (2002b) used to model the feedback effect of
the deformation of the velocity profiles in the flow channels on the saturation process
of the dynamo magnetic field at supercritical conditions. Thus, our experimental
findings support in some way the nonlinear model for the saturation mechanism of
the dynamo magnetic field of Rädler et al. (2002b).

The decrease of the local velocity with increasing helical flow rates can be explained
by a transition of an ordinary turbulent velocity profile in a circular channel to a
slug-type MHD velocity profile under the influence of the increasing intensity of the
mean magnetic field. This magnetic field is essentially perpendicular to the channel
direction and induces Lorentz forces to generate velocity redistributions. From MHD-
textbooks (see e.g. Shercliff 1965; Branover 1978; Moreau 1990) it is known that a
balance between pressure and Lorentz forces governs the channel flow at Hartmann
numbers of several hundred and that slug type velocity profiles occur in single pipes.
The achieved maximum local magnetic field intensities corresponding to figure 9
were 480 (Gauss) at a helical flow rate V̇ H = 118 (m3 h−1). This implies a Hartmann
number Ha ≈ 600 (for the definition of the Hartmann number we refer to table 1
of Müller et al. 2004). This is an order of magnitude where a core flow, i.e. slug
flow approximation, may describe MHD-channel flow satisfactorily. The saturation
behaviour of the velocity for high Hartmann numbers is thus obvious within the
scope of an asymptotic MHD core-flow model. We mention here explicitly that the
13 % decrease of the local velocity, measured by the CPM-probe in the channel
centre is in fair agreement with the relationship between the maximum turbulent
velocity in a fully developed turbulent pipe flow and the associated mean flow which
is ū =0.84 umax for a Reynolds number Re = 106 (see e.g. Schlichting 1958, p. 467).
These facts support our explanations for the MHD-saturation process.

The response of the dynamo magnetic field to the velocity fluctuations can be
identified from the r.m.s-values of the compensated time signal E′ = E′

(12) − E′
(34)

recorded at the CPM-probe. A sequence of r.m.s.-data for subcritical and supercritical
flow conditions are plotted in figure 10 for equal flow rates in the channel systems.

The data were evaluated from recordings of 20 min at a data acquisition rate
of 512 Hz and for equal axial and helical flow rates. At subcritical flow rates, i.e.
V̇ c = V̇ H < 105 (m3 h−1) we observe a moderate linear increase of the r.m.s. values.
When dynamo action sets in for V̇c = V̇ H �105 (m3 h−1), the growth rate of the r.m.s.-
values becomes suddenly larger, but levels off for even higher volumetric flow rates
as is indicated by the fitting line through the data points.

At first glance, it is surprising that the velocity fluctuations and as their measure,
the r.m.s.-values, grow beyond the level of ordinary turbulence fluctuations under
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Figure 10. The evaluated r.m.s.-values for the axial velocity fluctuations as a function of the
volumetric flow rates for conditions of equal helical and axial flow rates; �, �, � experimental
data recorded on different days; - - - -, fitting line.

the influence of dynamo action, as figure 10 indicates. We could have speculated
that because of Joule dissipation these fluctuations were dampened instead, at least
in the channel centre. This has been observed for fully developed liquid-metal pipe
flow under the influence of a homogeneous external magnetic field (see also the
above cited text books on MHD). In our experiment, such clean conditions are not
available. On the contrary, the turbulent channel flow is not fully developed only 6
pipe diameters downstream of a 180◦ bend and is contaminated by secondary flows
originating from the bend. Moreover, the fluctuating dynamo magnetic field acts on
the turbulent channel flow. Taking into account the principal spatial resolution limits
of the CPM-probe and requiring a systematic error margin of less than say 5 % (see
the Appendix for more discussion), this probe is capable of sensing with reasonable
accuracy temporal fluctuations corresponding to vortices of wavelengths comparable
with the diameter of the axial channel, i.e. dH = 0.1 m. Spatial perturbations of this
size correspond to fluctuation frequencies up to about 40 Hz at channel velocities of
about 4m s−1.

Twice the channel diameter is, of course, also the natural length scale to start
dynamo action in the 52 vortex generators. Thus, it is justified to assume that the
increasing velocity fluctuations reflect above all the onset and further development of
the dynamo excitation. A sublinear increase of the MHD-turbulence level in the range
of dynamo action, seen in figure 10, seems reasonable in the light of a transcritical
bifurcation process that we encounter with the onset of dynamo action (see Müller
et al. 2004). It indicates a saturation effect also for the dynamo relevant velocity
fluctuations in the lower range of length scales associated with the generation of the
dynamo magnetic field.

For representative subcritical, near critical and supercritical states the power spectral
densities of the compensated velocity signal are shown in figure 11. Assessing the
technical quality of the PSD-functions in figure 11, we must realize that the power
spectra are affected by a significant instrumental noise level as the observable power
reduction is only one decade in the relevant frequency range 0.5 <f (Hz) < 100.
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Figure 11. Power spectral density (PSD) for the velocity signal from the compensated per-
manent magnet probe (CPMP) recorded for sub critical (V̇ c = V̇ H = 80 (m3 h−1)), near critical
(V̇ c = V̇ H = 105 (m3 h−1)) and supercritical (V̇ c = V̇ H = 110 (m3 h−1); V̇ c = V̇ H = 115 (m3 h−1))
operational conditions.

Nevertheless, as a characteristic physical feature we see that the power level in the
low-frequency range 0.5 <f (Hz) < 5 increases slightly from the subcritical to the near-
critical range (V̇c = V̇ H = 80 (m3 h−1) to V̇ c = V̇ H =105 (m3 h−1)) and, furthermore,
in the supercritical range (V̇ c = V̇ H =110 (m3 h−1) to V̇ c = V̇ H = 115 (m3 h−1)). This
accords with findings for the r.m.s.-values of figure 10. Indeed, an integration of the
power spectra in the frequency domain resulted in variance values corresponding
to the r.m.s.-values of figure 10. Furthermore, for supercritical conditions, we may
recognize a spectral power shift from the lower- to the higher-frequency range. As a
consequence, a stronger decay of power occurs in the observable final range, which
indicates an increase of the magnetohydrodynamic dissipation for higher frequencies.
There is also an intermediate frequency range 5 <f < 10 Hz of reduced power at
supercritical conditions. A power accumulation adjoins this power suppression as seen
by the broadband peak around a frequency f ≈ 20 Hz. This observation indicates an
obviously non-uniform, selective amplification or damping mechanism for the velocity
fluctuations in the higher-frequency domain under the influence of dynamo action.

The power decay in the high-frequency range 10 <f (Hz) < 100 follows fairly well
an f −1 power law in the sub- and near-critical range and an f −1.5 power law
in the supercritical range. For fully developed turbulent pipe flow we expected,
as outlined in Müller et al. (2004), the Kolmogrov (1941) spectral distribution
EV

f ∼ f −5/3 for the inertial subrange at subcritical condition and a generalized
(Iroshnikov 1964; Kraichnan 1965; Biskamp 1993) energy spectrum for correlated
MHD-turbulence in the form EV

f ∼ f −m with 3/2 < m < 3. This is not the case for the
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Figure 12. Normalized cross-correlation function (CCF) of the velocity signal recorded by the
compensated permanent magnet probe at position (0.1, 0.1, 0.075m) and the signal of a Hall
probe for Bz at position (0, 0, 0.075m). The CCFs are presented for two temporal reductions
(−10 < t (s) < 10) and (−1 < t (s) < 1). Operational conditions: V̇ c = V̇ H = 115 (m3 h−1).

hydrodynamic turbulence in our axial channel flow which is not fully developed. For
the magnetohydrodynamic turbulence, only the lower limit of the generalized power
law seems to have been realized. We attribute this deficit in part to the too small
signal to noise ratio of about 10 of the measuring chain of the CPM-probe. As a
consequence, our former interpretations (Müller et al. 2004) of the observed strong
spectral power decay of the magnetic energy, as displayed in the PSD-graphs in figure
6, cannot be based on our present experimental findings.

Another challenging aspect of dynamo action is the mutual influence between
fluctuations of the magnetic field and the velocity. We investigated this issue by
cross-correlating the time signals of the CPM-probe with those of the Hall and coil
sensors for different components of the magnetic induction and time derivatives of
the magnetic flux, respectively, and for various operational states. We found relevant
correlations between the signals only for short distances between the locations of the
probes, for short time scales of the order of less than 1 s and under conditions for
the largest technically feasible dynamo magnetic fields of several hundred Gauss. A
typical example for a cross-correlation between the time signal for the velocity from
the CPM-probe at a position x = 0.1 m, y = 0.1 m, z = 0.075 m and a signal of the
Bz-component from a Hall sensor at position x = 0, y = 0, z = 0.075 m is shown in
figure 12.

The operational conditions were V̇ c = V̇ H =115 (m3 h−1). The correlation graph
shows two characteristic features. (i) A small, nevertheless, distinct 2 % correlation
of a quasi-periodic fluctuation of a period of about τP ≈ 0.2 s. (ii) A time delay of
τd ≈ −0.15 s. According to Bendat & Piersol (1986), the quality of the CCF in figure 12
may be associated to narrowband random noise signals. The same quality of
correlation was also observed for a state of operation with V̇ c = V̇ H = 112 (m3 h−1),
however, not for even lower flow rates. No significant correlations could be identified
between the other two components of the magnetic induction Bx, By and the velocity
from the corresponding time signals under the same flow rate conditions.

The cross-correlations between the time signals of the coil sensors (see figure 1)
and the CPM-probe showed similar features. Two typical CCF-examples for the time
derivatives of an axial and an azimuthal magnetic flux and the axial velocities are
shown in figure 13. The operational conditions were the same as in figure 11 for
V̇ c = V̇ = 115 (m3 s−1). The ‘equator’-coil measured the time rate of change of the
axial flux Φ̇z. The signal of Φ̇ϕ was recorded by a coil in a plane inclined by an angle
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Figure 13. Cross-correlation functions (CCF) of the velocity signal recorded by the
compensated permanent magnet probe 1 at position (0.1, 0.1, 0.075m) and signals of the coil
flux sensors Cax (a, b) and Cu1 (c, d) for the axial and azimuthal magnetic flux components.
Each CCF is presented for two different time intervals (−10 < t (s) < 10) and (−1 < t (s) < 1).
Operational condition: V̇ c = V̇ H =115 (m3 h−1).

of 30◦ to the (x, z)-coordinate plane (see figure 1). In figure 13(a, b) a correlation of
about 5 % is seen between the axial magnetic flux and the velocity in the axial channel.
Moreover, there is a strongly dampened, quasi-periodic correlation signal for a time
interval |�t | < 0.4 s with a period of about τP ≈ 0.2 s in accord with the observation
for the correlation between the Hall- and the CPM-probe signals in figure 12.
However, a noticeable time delay does not exist in this case, in contrast to the
correlations between the Hall- and CPM-probe signals. Furthermore, a significant
correlation between the measured time derivative of the azimuthal magnetic flux and
the axial velocity cannot be identified from figure 13(c, d). This is in accordance
with the observation for correlations between the By , Bx-components and the axial
velocity.

The evaluations of the spatial cross-correlations between the velocity and magnetic
field fluctuations presented in figures 12 and 13 show a distinct preference for
an interaction of fluctuations of the co-oriented axial velocity uz and induction
component Bz. This holds for the time series recorded by the Hall and coil sensors.
This may be interpreted as coherence between the axial velocity fluctuations and the
stretching of mean radial magnetic lines of force by just these velocity fluctuations. The
quasi-periodic character of this coherency at a period of roughly τP ≈ 0.2 s underlines
the hydrodynamic origin for this observation. This time period is compatible with the
injection frequency for the hydrodynamic helicity into the system referred to above.
The readable delay time between the correlated signals in figure 12(b) is τd ≈ 0.15 s.
Two transport mechanisms for the magnetic field offer an explanation for the observed
delay time of the cross-correlation, namely Alfvén waves and magnetic diffusivity.
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For our specific arrangement of the two probes, the distance between them was
0.14 m. The Alfvén velocity based on the measured intensity of the mean magnetic
field is VA ≈ 1 (m s−1). This corresponds to a transport time of 0.14 s for an Alfvénic
fluctuation to travel between the two sensors, a value very close to the measured
delay time of 0.15 s. If we choose diffusion, described by the magnetic diffusivity
λ=0.1 (m2 s−1), as the governing transport process between the sensors, then this
would result in a delay time of 0.2 s, a value slightly higher than that observed.
Considering the two possible explanations and the closeness of the derived relevant
transport times, the present data base does not provide a conclusive preference for
one of them. The governing transport process for the fluctuations of the magnetic
field under supercritical dynamo conditions requires, therefore, further investigations.

The fact that we could not detect any significant delay time from cross-correlation
measurements employing the CPM-probe and the equatorial coil sensor (see
figure 13a, b) must be attributed to the integrating effect of the coil sensor with
regard to the flow in all 52 helical channels having a vanishing overall hydrodynamic
helicity.

4. Conclusions
The presented experimental results complement and extend previous experimental

investigations (Müller et al. 2004) in two respects.
Extending the measurements of the magnetic field components along the test

module axis from the centre to a distinct location outside of the module specified
furthermore the properties of the mean dynamo magnetic field. The measured data
indicate an intrinsic non-symmetric field distribution in the real test module, compared
to calculated data obtained for an ideal symmetric test. The dynamic behaviour of
the magnetic field was explored in addition by a signal analysis for the time rate of
change of the azimuthal and axial dynamo magnetic flux obtained from sensor coils.
The power spectra of the temporal variations of the azimuthal flux show a power
accumulation in an intermediate low-frequency range that corresponds to large spatial
scales of the magnetic field. The power spectra of the axial flux variations reveal the
injection of mechanical helicity into the system by a power peak at a frequency that
is compatible with the turn-around time of the flow in the helical channels.

The back reaction of the dynamo magnetic field on the velocity distribution in
the axial channels of the test module was analysed with the help of a compensated
permanent-magnet-potential-probe. The evaluation of the mean values of the probe
signals indicates a transition of a turbulent hydrodynamic pipe flow velocity profile
into a magnetohydrodynamic slug-flow profile for increasing dynamo intensities. The
measured local turbulent intensities of the velocity increase with the onset of dynamo
action but exhibit a trend to saturation at pronounced supercritical conditions. This
contrasts at first glance with the common experience that turbulent fluctuations
are dampened in fully developed MHD-channel-flow owing to the additional Joule
dissipation. However, the effect of the fluctuating inhomogeneous dynamo magnetic
field on velocity perturbations leads to a different observation. A significant cross-
correlation exists between the time signals of the axial component of the dynamo
magnetic field and the velocity in the axial channels for short spatial separation of
the sensors. It is suggested that this interaction is caused by the axial convective
transport of perturbations of the mean magnetic field generated by the helical flow
components in the vortex generators.
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Appendix. The permanent magnet probe and its calibration
The measuring principle of the miniature permanent magnet probe (PMP) is based

on Ohm’s law in moving conducting liquids in the form

j = σ [E + u × B], (A 1)

where j is the electric current density, E the electric field, B the magnetic induction,
u the velocity of the moving liquid and σ the electrical conductivity of the liquid. It
has been shown at length by Ricou & Vives (1982), Weissenfluh (1985) and Kapulla
et al. (2000) that in liquid-metal flow, such as liquid-sodium flow, the current density
j in relationship (A 1) can be neglected in the vicinity of small immersed test probes
containing a miniature permanent magnet. This even holds, as they show, if other
current sources such as thermally induced Seebeck-potentials in thermally stratified
liquid-metal flows are present. Moreover, Weissenfluh (1985) has first demonstrated
that in turbulent liquid-metal flow, fluctuating velocity signals can be recorded and
statistically evaluated with the aid of a miniature permanent magnet probe. Horanyi
& Krebs (1988), Knebel & Krebs (1994) and Knebel et al. 1998) developed the
original concept of the probe with one miniature permanent magnetic dipole and
one pair of thermocouple wires as two electrodes further on into a compensated
permanent magnet probe (CPMP) with two pairs of thermocouple wires, i.e. two pairs
of electrodes, as sketched in figure 3. They used this probe to measure simultaneously
and directly local velocity and temperature time series in thermally stratified sodium
flow. We have used their measuring and signal evaluation technique to determine the
properties of the axial velocity component of a turbulent channel flow embedded in
a magnetically stratified environment caused by dynamo action.

Prerequisite for an application of a permanent magnet potential probe in a
magnetically stratified environment is again a negligible current density in Ohm’s law,
which may be modified by the external dynamo magnetic field BD . The relative change
of the current density owing to the dynamo field can be estimated by decomposing
the current density into two parts j = j iPM + jD originating from the presence of
the permanent magnet, the induced current jiPM, and from the dynamo field BD,the
current jD . Next, applying Ampere’s law gives j = (1/µ)∇ × [BiPM + BD], where BiPM

is the induced magnetic induction due to the presence of the permanent magnetic
dipole and the liquid metal flow. The relative magnitude of the two current constituents
can be seen by an order of magnitude estimation using the relevant length scales for
the probe, the diameter of the probe tip dPM =2.5 mm, the dynamo module height
hD =1 m and the hydraulic diameter of the flow channels dH = 0.1 m. Furthermore,
the magnetic induction may be scaled by the intensity of the miniature dipole magnet
|BPM|. We find for an estimate

|j |
|BPM| <

|jiPM|
|BPM| +

|jD|
|BPM| = O

{
1

dPMµ

[
|BiPM|
|BPM| +

|BD|
|BPM|

dPM

L

]}
, (A 2)

where L is one of the two relevant dynamo length scales. From this relationship, it
becomes obvious that the augmentation of the current density due to the dynamo
magnetic field is small as long as |BD|/|BPM| � 1 and dPM/L � 1 as in our case
namely of the order 10−2–10−3 depending on whether the channel diameter dH or
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the module dimension hD is chosen as the relevant relevant length scale. Thus, in a
good approximation the permanent magnet probe should, in principle, also work in
a moderately stratified magnetic environment and the evaluation rule,

E = −u × B, (A 3)

should hold in a good approximation even if BD varies in time in a moderate frequency
range.

For a permanent magnet probe designed as seen in figure 3 and placed in an axial
channel flow, the potential difference E12 measured between two electrodes (1, 2) will
give

E(12) ∼ uB⊥, (A 4)

where B⊥ is the local component of the magnetic field perpendicular to the velocity
component u to be measured and perpendicular to a straight line between the
electrodes. As B⊥ is not known exactly, nor are the particular small-scale fabrications
uncertainties of the probe, the probe must be calibrated under well-known flow
conditions to obtain the probe characteristic in terms of a relationship

u = γE(12),

with γ as the calibration factor.
We next apply relationship (A 4) to the specific design of the compensated

permanent magnet probe (CPMP) and derive relationships for a direct evaluation
of the time averaged mean velocity ū and the velocity fluctuation u′. We decompose
the induced voltage E between two electrodes, the velocity u and the dynamo
magnetic induction BD in a temporal mean and a fluctuating component that read
as E = Ē + E′, u = ū + u′, B⊥ = BPM + B̄D + B ′

D where BPM is the contribution of
the permanent magnetic dipole to the overall magnetic induction at the probe tip.
Inserting these relationships into relationship (A 4) and using simple averaging rules,
we obtain for the voltage at the electrodes in the plane (1.2) (see figure 3).

Ē(12) ∝ ū(12)BPM(12) + u′
12B

′
D(12) + ū(12)B̄D(12), (A 5a)

E′
(12) ∝ u′

(12)B
′
D(12) − u′

(12)B
′
D(12) + ū(12)B

′
D(12) + u′

(12)BPM(12). (A 5b)

Corresponding relationships hold for the pair of electrodes in the plane (3, 4):

Ē(34) ∝ ū(34)BPM(34) + u′
(34)B

′
D(34) + ū(34)B̄D(34), (A 6a)

E′
(34) ∝ u′

(34)B
′
D(34) − u′

(34))B
′
D(34) + ū(34)B

′
D(34) + u′

(34)BPM(34). (A 6b)

Because of the short distance of 3 mm between the two pairs of electrodes in the
planes (1, 2) and (3, 4), we may assume that the relevant mean and fluctuating parts
of the velocity and the induced dynamo magnetic field are the same in the two planes,
i.e. ū(12) = ū(34), B̄D(12) = B̄D(34), B

′
D(12) = B ′

D(34). This assumption is correct to the order
dPM/L where dPM is the distance between the two electrodes of the probe and Lis
either the length of the axial channel hD or its width dH , if variations of the relevant
quantities on the latter length scale are to be taken into account. This can be shown
by a straight forward Taylor expansion of the quantities in the plane (3, 4). With
these assumptions we form the difference of equations (A 5a) and (A 6a) as well as
that of (A 5b) and (A 6b). We arrive, after some algebra, at the following expressions
for the mean and fluctuating velocities

ū ∝ Ē(12) − Ē(34)

BPM(12) − BPM(34)

, (A 7a)
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u′ ∝
E′

(12) − E′
(34)

BPM(12) − BPM(34)

, (A 7b)

where BPM(12) and BPM(34) are the intensities of the magnetic induction of the
permanent magnet in the respective measuring plane of the pairs of electrodes.
BPM(12) and BPM(34) differ significantly from each other as the effective range of the
miniature dipole magnet in the probe tip is very small. The relationships (A 7a) and
(A 7b) are correct to the order dPM/L as outlined above.

Introducing the ratio of the induction intensities α = BPM(34)/BPM(12) and a
proportionality factor γ , the evaluation relationships (A 7) for the velocities to be
measured by the compensated permanent magnet probe read as

ū = γ
Ē(12) − Ē(34)

1 − α
, (A 8a)

u′ = γ
E′

(12) − E′
(34)

1 − α
. (A 8b)

The values of the factor γ and the ratio α can be determined from calibration
measurements under subcritical, i.e. non-dynamo active flow conditions.

We mention here explicitly, but do not outline in detail, that the design of the
CPM-probe and its particular evaluation procedure eliminates also in principle any
significant influence of the induced currents between the electrodes (12) and (34)
originating from the dynamo magnetic field. This is easily seen, if the outlined
evaluation procedure is directly applied to (A 1). Again, the systematic evaluation
error for the CPM-probe as a whole is of the order 0.3 % <dPM/L < 3 % depending
on the relevant dynamo length scales.

For the velocity fluctuations, the CPM-probe acts as a low-pass filter, i.e. length
scales smaller than the electrode-distance of 3 mm (see figure 3) cannot be resolved.
To be conservative, by-passing vortices of a wavelength of 0.01 m should be sensed
by the probe tip. Since the velocity in the axial channels of the test module varied in
the range 3.8 m s−1 � u � 4.1 m s−1 for the relevant dynamo experiments, a significant
deterioration of the dynamical sensitivity of the probe must only be expected in
a frequency range f > 300 Hz. This is beyond the range of our observed relevant
dynamical phenomena outlined in § 3.2. Thus, there is no significant limitation of the
CPM-probe in its frequency response for our experimental applications.

Next we describe the calibration procedure of the CPM-probe. The calibration
and testing of the compensated permanent magnet probe was carried out at fully
installed conditions and for subcritical flow rates, i.e. without dynamo action. The
compensated CPM-probe was located in the centre of an axial channel at a distance
of l = 0.56m from the exit of a return bend.

For several fixed volumetric flow rates, the signals of the induced potential E was re-
corded from the ends of the two pairs of thermocouple wires of the probe (see figure 3).
(The volumetric flow rates in the axial channels of the module were measured by
EM-flow meters outside the test module, as described by Stieglitz & Müller 1996).

A typical calibration record for two pairs of alumel thermocouple wires in a plane
(1, 2) and (3, 4) of the CPM-probe is given in figure 14.

There is a linear relation between the measured voltage E and the volumetric flow
rates in the form E =A + BV̇ c, where A defines the offset and B is the calibration
factor. From several calibration runs we found for the parameters of the alumel wires
in plane (1, 2): B1 = (1.114 ± 0.02) (µV/(m3 h−1). The respective value for the alumel
wire pair in plane (3, 4) is: B2 = (0.210 ± 0.003) (µV/(m3 h−1)). The overall estimated



438 U. Müller, R. Stieglitz and S. Horanyi

0 20 40 60 80 100 120 0 20 40 60 80 100 120
0

20

40

60

80

100

120

0

20

40

60

80

100

120
(b)(a)

y = A + B*x
A = 1.027 
B = 1.134 

E
(1

,2
) 
(µ

V
)

Vc (m
3 h–1) Vc (m

3 h–1)

E
(3

,4
) (

µ
V

)

Plane (1,2)
y = A + B*x
A = 0.779
B = 0.213

Plane (3,4)

Figure 14. Calibration graph correlating induced voltages of CPM-probe (E) and
volumetric flow rates V̇ c in the axial channels.

inaccuracy (caused by the design of the PM probe sensor, the electrical amplifier,
and the volumetric flow detection) is less than 5 %. Assuming that the channel flow
is quasi-fully developed in the centre of the channel we may use the relationship
ū= 0.84umax between the average velocity and the maximum velocity for turbulent
flow in a circular pipe (see e.g. Schlichting (1958) to correlate B even to the local
mean velocity at the location of the probe tip.

The offset value that is primarily caused by the status of the measuring chain
varied between the different runs. No uniformly valid value could be determined by
calibration tests and thus had to be evaluated specifically in separate experiments.
Introducing the offset corrected measured voltage in plane (1, 2) and plane (3, 4) into
the relationship Ecorr = BV̇ c and using the calibration factors b1 and b2 we obtain
for the volumetric flow rate sensed by the compensated PM-probe in the centre of
the axial channel (diameter d = 0.1 m)

V̇ c = (m3 h−1) =
1

B1

Ē(12) − Ē(34)

(1 − B2/B1)
= 1.10

(
E(12) − E(34)

) (m3 h−1)

(µV )
. (A 9)

Assuming fully developed turbulent channel flow and relating the volumetric flow
rate to the average channel velocity (with 1 (m3 h−1) ÷ 3.55 × 10−2 (m s−1)) this yields
for the maximum velocity in the channel centre,

umax(m s−1) = 4.67 × 10−2
(
E(12) − E(34)

) (m s−1)

(µV )
. (A 10)

In summary, the measurement of the velocity with the help of the compensated
permanent magnet probe is flawed, with errors originating from the design of the
probe, from the signal transfer in the measuring chain, and from variations in the
power control of the pumps in the supply loops. The former errors were estimated
as of the order dPM/L < 0.03, the frequency resolution of flow perturbations holds
up to 0.3 kHz and the sensitivity of the measuring chain is assessed as �E ≈ 0.1 µV.
The uncertainty in the power control of the MHD-pumps amounted to an error in
the volumetric flow rates of �V̇ /V̇ = ± 0.02. This is also reflected in the uncertainty
bounds of the calibration factors B1 and B2 given in the text above. Thus, assessing
the overall relative error of our evaluated velocity data at about 5 % seems to be
reasonable.
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